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the real technical challenge. The diffraction rings in the star’s diffraction pattern
completely swamp the faint signal from the planet.

11.3 The Array Theorem

In this section we develop the array theorem, which is used for calculating the
Fraunhofer diffraction from an array of N identical apertures. We will be using
the theorem to compute diffraction from a grating, which may be thought of as a
mask with many closely spaced identical slits. However, the array theorem can be
applied to apertures with any shape and configuration, as suggested by Fig. 11.9.

Figure 11.9 Array of identical aper-
tures.

Consider N apertures in a mask, each with the identical field distribution
described by Eaperture(x ′, y ′,0). Each identical aperture has a unique location on
the mask. Let the location of the nth aperture be designated by the coordinates(
x ′

n , y ′
n

)
. The field associated with the nth aperture is then Eaperture(x ′−x ′

n , y ′−y ′
n ,0),

where the offset in the arguments shifts the location of the aperture. The field
comprising all of the identical apertures is

E
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)= N∑
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n ,0) (11.19)

We next compute the Fraunhofer diffraction pattern for the above field. Upon
inserting (11.19) into the Fraunhofer diffraction formula (10.19) we obtain
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(11.20)

where we have taken the summation out in front of the integral. We have also
integrated over the entire (infinitely wide) mask, taking Eaperture to be zero except
inside each aperture.

Even without yet choosing the shape of the identical apertures, we can make
some progress on (11.20) with the change of variables x ′′ ≡ x ′−x ′

n and y ′′ ≡ y ′−y ′
n :
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(11.21)
Next we pull the factor exp{−i k

z (xx ′
n + y y ′

n)} out in front of the integral to arrive
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at our final result:
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(11.22)

For the sake of elegance, we have traded back x ′ for x ′′ and y ′ for y ′′ as the
variables of integration. Equation (11.22) is known as the array theorem.3 Note
that the second factor in brackets is exactly the Fraunhofer diffraction pattern
from a single aperture centered on x ′ = 0 and y ′ = 0. When more than one
identical aperture is present, we only need to evaluate the Fraunhofer diffraction
formula for a single aperture. Then, the single-aperture result is multiplied by the
summation in front, which contains entirely the information about the placement
of the (many) identical apertures.

Figure 11.10 Fraunhofer diffrac-
tion pattern from two identical
circular holes separated by twice
their diameters.

Example 11.2

Calculate the Fraunhofer diffraction pattern for two identical circular apertures
with diameter D whose centers are separated by a spacing h.

Solution: As computed previously, the single-slit Fraunhofer diffraction pattern
from a circular aperture is given by (10.29). This is multiplied by (the square of) the
factor on the first line of the array theorem (11.22), which gives an overall intensity
pattern of
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3A somewhat abstract alternative route to the array theorem recognizes that the field for

each aperture can be written as a 2-D convolution (see P0.26) between the aperture function
Eaperture

(
x′, y ′,0

)
and delta functions specifying the aperture location:
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The integral in (11.20) therefore may be viewed as a 2-D Fourier transform of a convolution, where
kx/z and k y/z play the role of spatial frequencies. The convolution theorem (see P0.26) indicates
that this is the same as the product of Fourier transforms. The 2-D Fourier transform for the delta
function (times 2π) is
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The array theorem (11.22) exhibits this factor. It multiplies the single-slit Fraunhofer diffraction
integral, which is the Fourier transform of the other function.
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The overall pattern then becomes
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This pattern can be seen in Fig. 11.10.

11.4 Diffraction Grating

In this section we will use the array theorem to calculate the Fraunhofer diffraction
from a grating comprised of an array of equally spaced identical slits. An array of
uniformly spaced slits is called a transmission grating (see Fig. 11.11). Reflection
gratings are similar, being composed of an array of narrow rectangular mirrors
that behave similarly to the slits.

Figure 11.11 Transmission grating.

Let the slit apertures be positioned at

x ′
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n = 0 (11.23)

where N is the total number of slits. Then the summation in the array theorem,
(11.22), becomes
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This summation is recognized as a geometric sum, which can be performed using
formula (0.65). Equation (11.24) then simplifies to
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The diffraction pattern for a single slit was previously calculated in example 10.4.
When (11.25) and (10.20) are installed in the array theorem (11.22), we get for the
intensity
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(11.26)

This is the Fraunhofer diffraction pattern for the overall grating.
The y dependence in (11.26) is typically unimportant in applications where

spectral information is revealed in the x-dimension only. Moreover, the inci-
dent field often does not have a uniform strength along the entire slit in the
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y-dimension, making the diffraction pattern along the y dimension different
from sinc

[(
π∆y/λz

)
y
]

anyway. Since y is of little relevance, we can consider the
pattern in (11.26) for fixed y , say y = 0. The intensity pattern in the horizontal
dimension may be written as

I (x) = Ipeaksinc2
(
π∆x
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x

) sin2
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N πhx
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)
N 2 sin2

(
πhx
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) (11.27)

Note that lim
α→0

sin Nα
sinα = N so we have placed N 2 in the denominator and absorbed

the same factor into the definition of Ipeak, which represents the intensity on the
screen at x = 0. Again, the intensity Ipeak is associated with a given value of y .

It is left as an exercise to study the functional form of (11.27), especially how
the number of slits N influences the behavior. The case of N = 2 describes
the diffraction pattern for a Young’s double slit experiment. We now have a
description of the Young’s two-slit pattern in the case that the slits have finite
openings of width ∆x rather than infinitely narrow ones.

11.5 Spectrometers
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Figure 11.12 Diffraction through
various numbers of slits, each
with ∆x = h/2 (slit widths half
the separation). The dotted line
shows the single slit diffraction
pattern. (a) Diffraction from a
double slit. (b) Diffraction from 5
slits. (c) Diffraction from 10 slits.
(d) Diffraction from 100 slits.

The formula (11.27) can be exploited to make wavelength measurements. This
forms the basis of a diffraction grating spectrometer. In order to achieve good spa-
tial separation between wavelengths, it is necessary to allow the light to propagate
a far distance. Optimal wavelength separation therefore occurs in the Fraunhofer
regime for which (11.27) applies.

A spectrometer has relatively poor resolving power compared to a Fabry-Perot
interferometer. Nevertheless, a spectrometer is not hampered by the serious
limitation imposed by free spectral range. A spectrometer is able to measure a
wide range of wavelengths simultaneously. The Fabry-Perot interferometer and
the grating spectrometer in this sense are complementary, the one being able
to make very precise measurements within a narrow wavelength range and the
other being able to characterize wide ranges of wavelengths simultaneously.

To appreciate how a spectrometer works, consider Fraunhofer diffraction
from a grating, as described by (11.27). The structure of the diffraction pattern
has various peaks. For example, Fig. 11.12a shows the diffraction peaks from a
Young’s double slit (i.e. N = 2). The diffraction pattern is comprised of the typical
Young’s double-slit pattern multiplied by the diffraction pattern of a single slit.

(Note that sin2
(
2πhx
λz

)
/4sin2

(
πhx
λz

)
= cos2

(
πhx
λz

)
.)

As the number of slits N increases, the peaks tend to sharpen while staying in
the same location as the peaks in the Young’s double-slit pattern. Figure 11.12b
shows the case for N = 5. The prominent peaks occur when sin(πhx/λz) in the
denominator of (11.27) goes to zero. Keep in mind that the numerator goes to
zero at the same places, creating a zero-over-zero situation, so the peaks are not
infinitely tall.
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With larger values of N , the peaks can become extremely sharp, and the small
secondary peaks in between become tiny in comparison. Fig. 11.12c shows the
case of N = 10 and Fig. 11.12d, shows the case of N = 100.

When very many slits are used, the resulting sharp diffraction peaks becomes
very useful for measuring spectra of light, since the position of the diffraction
peaks depends on wavelength (except for the center peak at x = 0). If light of differ-
ent wavelengths is simultaneously present, then the diffraction peaks associated
with different wavelengths appear in different locations.

Consider the inset in Fig. 11.12d, which gives a close-up view of the first-order
diffraction peak for N = 100. The location of this peak on a distant screen varies
with the wavelength of the light. How much must the wavelength change to cause
the peak to move by half of its ‘width’ as marked in the inset of Fig. 11.12d? This
corresponds to the minimum wavelength separation that allows two associated
peaks to be distinguished.

Figure 11.13 Animation showing
diffraction through a number of
slits.

Finding the Minimum Distinguishable Wavelength Separation

As mentioned, the main diffraction peaks occur when the denominator of (11.27)
goes to zero, i.e.

πhx

λz
= mπ (11.28)

The numerator of (11.27) goes to zero at these same locations (i.e. Nπhx/λz =
N mπ), so the peaks remain finite. If two nearby wavelengths λ1 and λ2 are sent
through the grating simultaneously, their mth peaks are located at

x1 = mzλ1

h
and x2 = mzλ2

h
(11.29)

These are spatially separated by

∆xλ ≡ x2 −x1 = mz

h
∆λ (11.30)

where ∆λ≡λ2 −λ1.

Meanwhile, we can find the spatial width of, say, the first peak by considering the
change in x1 that causes the sine in the numerator of (11.27) to reach the nearby
zero (see inset in Fig. 11.12d). This condition implies

N
πh

(
x1 +∆xpeak

)
λ1z

= N mπ+π (11.31)

We will say that two peaks, associated with λ1 and λ2, are barely distinguishable
when ∆xλ =∆xpeak. We also substitute from (11.29) to rewrite (11.31) as

N
πh (mzλ1/h +mz∆λ/h)

λ1z
= N mπ+π ⇒ ∆λ= λ

N m
(11.32)

Here we have dropped the subscript on the wavelength in the spirit of λ1 ≈λ2 ≈λ.

http://optics.byu.edu/animation/fraunhof.mov
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As we did for the Fabry-Perot interferometer, we can define the resolving
power of the diffraction grating as

RP ≡ λ

∆λ
= mN (11.33)

The resolving power is proportional to the number of slits illuminated on the
diffraction grating. The resolving power also improves for higher diffraction
orders m.

Example 11.3

What is the resolving power with m = 1 of a 2-cm-wide grating with 500 slits per
millimeter, and how wide is the 1st-order diffraction peak for 500-nm light after
1-m focusing?

Solution: From (11.33) the resolving power is

RP = mN = 2 cm
500

0.1 cm
= 104

and the minimum distinguishable wavelength separation is

∆λ=λ/RP = 500 nm/104 = 0.05 nm

From (11.30), with z → f , we have

∆x = m f

h
∆λ= 1 m

2×10−6 m
0.05nm = 25 µm

As illustrated in the previous example, it is common to employ a focusing
optic to reach the Fraunhofer limit within a convenient distance. In addition,
since the array theorem requires the same illumination of each slit, the incident
light should be collimated or plane-wave like. This is also accomplished using
a lens. Fig. 11.14 illustrates the typical layout. Light enters a narrow slit located
at the focus of a concave mirror. The collimated light then strikes a reflective
diffraction grating. The first-order diffracted light is then focused by a second
concave mirror where the Fraunhofer diffraction of the grating appears. If a
CCD camera is positioned at the focus to record many wavelengths at once, the
instrument is called a spectrometer. If instead an exit slit is placed at the focus
so that only one wavelength at a time emerges through the slit, the instrument
is called a monochromator. In the latter case, the angle of the grating can be
scanned to cause different wavelengths to transmit through the exit slit.
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Figure 11.14 Symmetric monochromator layout.

11.6 Diffraction of a Gaussian Field Profile

Consider a Gaussian field profile (in the plane z = 0) described with the functional
form

E(x ′, y ′,0) = E0e
− x′2+y ′2

w2
0 (11.34)

The parameter w0 is called the beam waist, which specifies the radius of Gaussian
profile. It is depicted in Fig. 11.15. To better appreciate the meaning of w0,
consider the intensity of the above field distribution:

I
(
x ′, y ′,0

)= I0e−2ρ′2/w 2
0 (11.35)

where ρ′2 ≡ x ′2 + y ′2. In (11.35) we see that w0 indicates the radius at which the
intensity reduces by the factor e−2 = 0.135.

z-axis

Figure 11.15 Diffraction of a Gaus-
sian field profile.

We would like to know how this field evolves when it propagates forward from
the plane z = 0. Notice that the phase of (11.34) is uniform or plane-wave like. We
therefore expect the beam to expand outward as it diffracts along z.4 We compute
the field downstream using the Fresnel approximation (10.13):
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(11.36)

The Gaussian profile itself limits the dimension of the ‘aperture’, so there is no
problem with integrating to infinity. Equation (11.36) can be rewritten as
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4The beam would converge to narrower widths if instead we used a phase associated with
converging wavefronts like those on the left of Fig. 11.17.


