Bayesian Analysis of the Coin Bias

It is possible to determine the probability density for the coin’s bias H using a Bayesian approach. In this
example, we assume no prior knowledge, so we start with a uniform prior for H (i.e., every bias between 0
and 1 is equally likely). We flipped the coin 10 times and observed 7 heads.

1. Setting Up the Problem

e Unknown Parameter: H is the probability that the coin lands heads.
e Data: The coin was flipped 10 times and 7 heads were observed.

e Prior Assumption: With no prior knowledge, we assume a uniform prior for H over the interval
[0, 1]:
p(H)=1 for0<H<1.

2. The Likelihood Function

The likelihood of obtaining 7 heads in 10 flips given a bias H is modeled by the binomial distribution:

p(data | H) = (170) H'(1- H)3,

where (170 ) is the binomial coefficient. Since this coefficient is independent of H, it will be absorbed into the

normalization constant when we form the posterior.

3. Applying Bayes’ Theorem

Bayes’ theorem tells us:
p(H | data) o p(data | H) p(H).

Given our uniform prior, this becomes:

p(H | data) oc H'(1 — H)?,
This functional form corresponds to a Beta distribution. In general, the Beta distribution is given by:

Beta(H; o, ) o« H*71(1 — H)P~L,
Comparing exponents, we have:
a—1=7 = a=8, and f-1=3 = =4

Thus, the posterior distribution is:

p(H | data) = Beta(H;8,4).
4. Normalization Using the Beta Function

The normalized Beta distribution is given by:
H
p(H | data) =

where the Beta function B(q, ) is defined as:

['(a) T(5)

! 1 B—1
B(a,ﬂ):/ot (=0 = [



The Gamma function I'(n) generalizes the factorial function with I'(n) = (n — 1)! for positive integers n.
For our parameters:
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Evaluating:
7! =5040, 3!=6, 11!= 39916800,

we get:
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Thus, the normalized probability density is:

p(H | data) = 1320 H"(1 — H)® for 0 < H < 1.

5. Calculating the Probability Over an Interval

To find the probability that H lies in an interval [a, ] (with 0 < a < b < 1), integrate the density over that
interval: .

Pla<H<b) = / 1320H7(1 — H)dH.
This integral is often expressed in terms of the regularized incomplete Beta function I, («a, ), defined

as:
1
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Pla < H <b) = I,(8,4) — I(8,4).

Thus, for our case:

6. Evaluating the Density at Specific Values

The posterior density is:
p(H | data) = 1320 H' (1 — H)®.

We now calculate the value of this density at the following specific points:

At H=0.1
p(0.1) = 1320 x (0.1)7 x (0.9)3.
Calculations:
(0.1)"=10"=1x10"",
(0.9)% ~ 0.729,
SO,
p(0.1) = 1320 x 1 x 1077 x 0.729 ~ 9.62 x 107°.
At H=0.3
p(0.3) = 1320 x (0.3)" x (0.7).
Calculations:
(0.3)" ~ 0.0002187,
(0.7)% ~ 0.343,
SO,

p(0.3) ~ 1320 x 0.0002187 x 0.343 ~ 0.099.



At H=10.5
p(0.5) = 1320 x (0.5)" x (0.5)3.

Calculations:
1
0.5)" = — ~0.0078125
(05)7 = 13 7
1

(0.5)% = 5 = 0125,

S0,
1
p(0.5) ~ 1320 x 0.0078125 x 0.125 = 1320 x 074 ~ 1.289.
At H=0.7
p(0.7) = 1320 x (0.7)7 x (0.3)3.
Calculations:
(0.7)7 ~ 0.0823543,
(0.3)* = 0.027,
S0,
p(0.7) &~ 1320 x 0.0823543 x 0.027 ~ 2.936.
Note: This value is near the mode of the distribution, which occurs at H = —2=1_ = T —(.7.
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At H=0.9
p(0.9) = 1320 x (0.9)7 x (0.1)3.

Calculations:

(0.9)" ~ 0.4783,
(0.1)® = 0.001,

S0,
p(0.9) ~ 1320 x 0.4783 x 0.001 ~ 0.631.

Final Summary

e Posterior Density:
p(H | data) = 1320 H"(1 — H)3, for 0 < H < 1.

o Probability over an Interval [q,]:

b
Pla<H<b) = / 1320 H(1 — H)*dH = I,(8,4) — I,(8,4),

a

where I,.(8,4) is the regularized incomplete Beta function.

e Density Values at Specific H:

p(0.1) ~ 9.62 x 1075,
p(0.3) ~ 0.099,
p(0.5) ~ 1.289,
p(0.7) ~ 2.936,
p(0.9) ~ 0.631

This derivation explains how to obtain the probability density function for the coin bias H after observing
7 heads in 10 flips, starting from a uniform prior and using Bayesian analysis.



