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Abstract. In his 1900 Festschrift article, dedicated to the 25th anniversary
of Lorentz’ dissertation, Henri Poincaré derived an equation expressing conser-
vation of momentum in electromagnetic systems. I describe his proof and then
proceed to an example illustrating it. It turns out that Newton’s third law as a law
solely between interacting charges does not always hold true. Rather we must
also take into account the momentum stored in the electromagnetic fields in or-
der to conserve momentum. This generalization of momentum conservation to
include the momentum of the electromagnetic field led Poincaré in his paper to
mass energy equivalence for the energy content of his “fluide fictif," making it
probably the first assertion about E = mc2 as we have come to understand it.

PACS codes: 01.65.+g, 03.30.+p, 03.50.De

1 Introduction

In his 1900 Festschrift article, La théorie de Lorentz et le Principe de réac-
tion [1], Henri Poincaré addresses concerns about the status of Newton’s third
law in Lorentz’ relativistically invariant electromagnetic theory of electrons, at
least if one wishes to apply it solely to material objects. He derives an equa-
tion, namely Eq. (8), expressing conservation of momentum in electromagnetic
systems, which equation explicitly contains a term expressing the contribution
from the electromagnetic field. From this he concludes that electromagnetic
fields carry momentum. This momentum stored in the electromagnetic field
must be taken into account in order to uphold Newton’s third law in modified
form, which is an immediate corollary of Eq. (8).

After spelling out very clearly the limitations in electromagnetism of Newton’s
third law in its strict form as a law of action/reaction between pairs of material
objects, Poincaré in his Festschrift article goes on to consider a particular exam-
ple. It leads him to attribute to electromagnetic radiation a mass equal to E/c2

where E is the total energy of the radiation. It is thus in this paper where for the
first time a derivation of E = mc2 may rightfully be considered to have been
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given. This most famous formula of physics is described by Poincaré, not in
equation form, but rather in words by considering “a light pulse emitted from a
Hertzian oscillator and causing the emitter to suffer a recoil” for which he gives
numerical calculations in which E = mc2 is implicit1 [2]. That Einstein es-
sentially reproduces this very same derivation of Poincaré in his 1906 paper on
E = mc2 is an indisputable fact admitted by Einstein himself in that very same
paper2 [3].

Einstein’s 1905 paper [4], which suffers from the fallacy of “circulus in
probando" [5, 6] was probably an attempt to arrive at mass-energy equivalence
in a way different from Poincaré’s. Poincaré’s Festschrift article was considered
one of the most important and was one of the most widely studied papers by the
physics community of that time, and it is impossible to imagine that Einstein
had not familiarized himself with it by 1905, his annus mirabilis3.

2 Poincaré’s Revision of Newton’s Third Law of Motion

Now to Poincaré’s analysis of how the law of action/reaction is to be understood
in Lorentz’ theory. After a laudato on Lorentz’ electron theory, Poincaré writes:
“Let us briefly review the calculation by which one shows that, in the theory of
Lorentz, the principle of the equality of action and reaction is not correct, at
least if one wishes to apply it solely to material objects." He then explains how
he is led to this statement, which is what I now outline. This section is an almost
verbatim transcription of Poincaré’s Festschrift article, except for translation
into English and “modernization” of his equations into present day form. (In
this section, and only in this section, we use arrows over symbols to denote
vectors. For the rest of the paper, vectors are designated by bold-faced letters.)

We start with the Lorentz force law

~F =

∫
ρ
(
~E + ~v × ~B

)
dV , (1)

where ρ is the volume charge density of all charged material objects and ~v rep-
resents their velocity field so that the current density is ~j = ρ~v. Maxwell’s
equations in differential form are

~∇ · ~E =
ρ

ε0
, (2)

~∇ · ~B = 0 , (3)

1Neither does this most famous equation of physics appear explicitly in Einstein’s first article on
E = mc2 from 1905 [4, 6].

2Specifically, Einstein writes: “Although the simple formal considerations that have to be carried
out to prove this statement are in the main already contained in a work by H. Poincaré, for the sake
of clarity I shall not base myself upon that work.”

3This is basically the conclusion of Alberto A. Martinez, an historian of science who has recently
written a book about the subject [7].
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~∇× ~E +
∂ ~B

∂t
= 0 , (4)

~∇× ~B − µ0ε0
∂ ~E

∂t
= µ0ρ~v . (5)

Using the first and last of Maxwell’s equations in Eq. (1) we obtain

~F =

∫ {
ε0(~∇ · ~E) ~E − ε0

∂ ~E

∂t
× ~B +

1

µ0
(~∇× ~B)× ~B

}
.

Now

(~∇× ~B)× ~B = − ~B × (~∇× ~B) =

3∑
i=1

Bi
~∇Bi − ( ~B · ~∇) ~B

=

3∑
i=1

Bi
~∇Bi −

1

2
~∇| ~B|2 .

Thus

~F =

∫ {
ε0(~∇ · ~E) ~E − ε0

∂ ~E

∂t
× ~B +

1

µ0

3∑
i=1

Bi
~∇Bi −

1

2µ0

~∇| ~B|2
}
dV

= ε0

∫
dV ~B × ∂ ~E

∂t︸ ︷︷ ︸
~F1

+
1

µ0

∫
dV

3∑
i=1

Bi
~∇Bi︸ ︷︷ ︸

~F2

− 1

2µ0

∫
dV ~∇| ~B|2︸ ︷︷ ︸
~F3

+ ε0

∫
dV (~∇ · ~E) ~E︸ ︷︷ ︸

~F4

.

Integration by parts on ~F2 gives

~F2 =
1

µ0

∫
dσ(n̂ · ~B) ~B − 1

µ0

∫
dV ~B(~∇ · ~B)

and the generalized Stokes’ theorem applied to ~F3 gives

~F3 =
1

2µ0

∫
dσn̂ (| ~B|2).

Since ~∇ · ~B = 0 we get

~F2 − ~F3 =
1

2µ0

∫
dσ
{
2(n̂ · ~B) ~B − n̂ (| ~B|2

}
.
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~F4 = ε0

∫
dV (~∇ · ~E) ~E = ε0

∫
dV∇k(Ek

~E)− ε0
∫
dV Ek∇k

~E

= ε0

∫
dσ ~E · (n̂ · ~E)︸ ︷︷ ︸

~F ′
4

− ε0
∫
dV ~E · ~∇ ~E︸ ︷︷ ︸
~F

′′
4

.

Now
~E × (~∇× ~E) = Ei

~∇Ei − ( ~E · ~∇) ~E

and
Ei
~∇Ei =

1

2
~∇| ~E|2 ,

so

~F
′′

4 =
ε0
2

∫
~∇| ~E|2︸ ︷︷ ︸
~Y

+ ε0

∫
dV

(
~E × ∂ ~B

∂t

)
︸ ︷︷ ︸

~Z

,

where in obtaining the last term of this equation we used the third of Maxwell’s
equations.

~F1 − ~Z = ε0

∫
dV ~B × ∂ ~E

∂t
− ε0

∫
dV

(
~E × ∂ ~B

∂t

)

= ε0
d

dt

∫
dV ~B × ~B = − 1

c2
d

dt

∫
dV

(
1

µ0

~E × ~B

)
= − 1

c2
d

dt

∫
dV ~S ,

where
~S =

1

µ0

~E × ~B .

is the Poynting vector. Finally Poincaré computes

~F
′

4 − ~Y = εo

∫
dσ ~E(n̂ · ~E)− 1

2
ε0

∫
dV ~∇| ~E|2 =

ε0
2

∫
dσ
{
2 ~E(n̂ · ~E)− n̂| ~E|2

}
.

Combining everything he finally obtains for the Lorentz force

~F = ε0
d

dt

∫
dV ~B × ~E + (~F2 − ~F3) + (~F

′

4 − ~Y ) .

If one extends the integration over all space the surface terms ~F2− ~F3 and ~F
′

4−~Y
vanish and we are left with

~F = ε0
d

dt

∫
dV ~B × ~E = − 1

c2
d

dt

∫
dV ~S . (6)

84



Poincaré on Mass-Energy Equivalence

If we define the electromagnetic momentum density ~G and electromagnetic mo-
mentum ~PEM by

~G =
1

c2
~S

and
~PEM =

∫
dV ~G,

respectively, we can rewrite Eq. (6) as

~F = −d
~PEM

dt
. (7)

Now the Lorentz force represents the “rate of change of the momentum of all
ponderable matter”, i.e.,

~F :=
d~PMatter

dt

so that we obtain out of Eq. (7)

d~PMatter

dt
+
d~PEM

dt
= 0 . (8)

This expresses the law of conservation of momentum in electromagnetism:

the total momentum of an isolated electromagnetic system, consisting not only
of the momentum of the system of charges but also of the momentum of their
electromagnetic fields, is constant.

Poincaré’s statement about the law of action/reaction should now be clear, since
from Eq. (8) it can happen that in cases where there is a nonzero electromagnetic
momentum the total momentum due only to the material objects may not be
constant and hence lead to a violation of Newton’s third law. We now turn to
such an example.

3 Example: A Moving Line Charge and an Electron

It is convenient to use cylindrical coordinates (ρ, ϑ, z) for the point described
by the endpoint of the displacement vector r from the origin. The cartesian
coordinates of the point are (x, y, z). At some time t0 the electron is along the
x axis at a distance d from the origin and the line charge is along the z axis of
the coordinate system as shown in Figure 1. At the given time t0 the electron
has velocity vq and the line charge moves with speed u along the positive z
direction. It carries a uniform positive linear charge density, λ0.

In cylindrical coordinates the charge’s position and its velocity are given, respec-
tively, by

rq = dî = d(cosϑr̂− sinϑϑ̂)
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x

y

z axis

(x, y, z)
(ρ, ϑ, z)

ϑ

z

ρ
d

r

rq

vq −e,me

•

i = λ0u

Figure 1. Moving line charge and an electron. The moving line charge is located along
the z axis and the effective current of the moving line charge is i = λ0u.

and
vq =

drq
dt

= v(r̂ cosϑ− ϑ̂ sinϑ) ,

where v = vq = |vq| is the magnitude of the electron’s velocity. In the following
we work nonrelativistically (or, equivalently, we work relativistically but only
keeping at each step the lowest order in v/c), so that, at a generic point

r = ρr̂+ zk̂ ,

the electric field of the charge and the magnetic field produced by the charge are,
respectively [8]

Eq =
q

4πε0

r− rq
|r− rq|3

= − e

4πε0

(ρ− d cosϑ)r̂+ d sinϑϑ̂+ zk̂

(ρ2 + d2 + z2 − 2ρd cosϑ)3/2
, (9)
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Bq =
µ0

4π

qvq × (r− rq)

|r− rq|3

= −µ0

4π

ev(r̂ cosϑ− ϑ̂ sinϑ)× ((ρ− d cosϑ)r̂+ d sinϑϑ̂+ zk̂)

(ρ2 + d2 + z2 − 2ρd cosϑ)3/2

=
µ0

4π

evz(sinϑr̂+ cosϑϑ̂)− evρ sinϑk̂
(ρ2 + d2 + z2 − 2ρd cosϑ)3/2

. (10)

Similarly the electric and magnetic fields at the point r created by the moving
line charge are

E` =
2kλ0
ρ

r̂ (11)

and
B` =

µ0λ0u

2πρ
ϑ̂ (12)

respectively.

The magnetic force on the electron due to the line charge is clearly nonzero;
however, by symmetry, the magnetic field Bq created by the electron exerts
no net force on the moving line charge. Thus Newton’s third law for the ac-
tion/reaction pair consisting of the electron and the line charge is violated, since
there is a magnetic force exerted on the point charge by the magnetic field B` of
the line charge.

We need to show instead that Eq. (8) is true. We distinguish forces on the
electron from forces on the line charge by putting primes on the forces on the
line charge. Specifically, the total electromagnetic force on the electron due to
the line charge is

F = FE + FB = qE` + qvq ×B` = −
2keλ0
d

î− µ0eλ0vu

2πd
k̂ (13)

and for the total electromagnetic force on the line charge due to the electron

F′ = F′E =

∞∫
−∞

λ0 Eqdz =
2keλ0
d

î . (14)

Written out in terms of the individual forces of our problem Eq. (8) reads

F+ F′ +
dPEM

dt
= 0 . (15)

Subsituting our results for F and F′ given in Eqns. (13) and (14) into this equa-
tion gives

−µ0eλ0vu

2πd
k̂ +

dPEM

dt
= 0 , (16)
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which is what we need to show.

The linear momentum stored in the electric and magnetic fields is

P =
1

c2

∫
SdV , (17)

where
S =

1

µ0
E×B (18)

is the Poynting vector and the integration extends over all space. E and B are
the total electric and magnetic fields due to the electron and line charge

E = Eq +E` B = Bq +B` ,

so

S =
1

µ0
(Eq +E`)× (Bq +B`)

=
1

µ0
(Eq ×Bq +Eq ×B` +E` ×Bq +E` ×B`) .

We expect that only the interaction terms, i.e. the two middle terms in the lower
line of this equation, contribute to the force balance, and so we neglect the self-
interaction terms Eq × Bq and E` × B` in this equation. Thus the linear mo-
mentum in the fields responsible for the force balance is

P =
1

c2

∫
(Eq ×B` +E` ×Bq)dV . (19)

We claim that the second term gives vanishing contribution to the integral. To
see this we compute

E` ×Bq =
(2kλ0

ρ
r̂
)
×
(
− µ0

4π

evz(sinϑr̂+ cosϑϑ̂)− evρ sinϑk̂
(ρ2 + d2 + z2 − 2ρd cosϑ)3/2

)
=

2kµ0evzλ0 cosϑk̂

4πρ(ρ2 + d2 + z2 − 2ρd cosϑ)3/2

+
2kµ0evρλ0 sinϑϑ̂

4πρ(ρ2 + d2 + z2 − 2ρd cosϑ)3/2
. (20)

To establish the claim we observe that the first term in this expression gives zero
when integrated over z from z = −∞ to z = +∞ and the second term gives
zero when integrated over ϑ from 0 to 2π. We can perform the integrations for
the first term in Eq. (19) either by hand or by using Gradsteyn and Ryshik [9]
and we obtain

PEM = −µ0eλ0u

2π
ln
R

d
k̂ .
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Thus,
dPEM

dt
=
µ0eλ0vu

2πd
k̂ .

Substitution of this result into Eq. (16) leads to the desired result.

Conclusions and Futher Developments

It is also possible to study conservation of angular momentum in electromag-
netism along lines similar to the analysis just presented for conservation of lin-
ear momentum. In this case we would need to take into account the contribution
of the angular momentum of the electromagnetic field to the total angular mo-
mentum of the system. An example illustrating this can be found in the Chapter
17 of the Feynman Lectures on Physics [10]. It involves a circular rotating disk
and a circular solenoid carrying a current sitting on top of the disk and placed in
such a way that the solenoid is concentric with the disk. Feynman doesn’t solve
the problem, rather he leaves it as an exercise to the reader, stating only: “When
you figure it out, you will have discovered an important principle of electromag-
netism." This important principle is, just as it was in our case for linear momen-
tum, that the angular momentum of the electromagnetic field must be taken into
account in order to uphold the conservation of angular momentum [11].

Both of these examples have much to say about the momentum of radiation
and its ensuing consequence, namely the principle of the inertia of energy at
least for electromagnetic fields. It seems clear that Poincaré as early as 1900
fully understood this, in particular, the implications of Eq. (8) for mass-energy
equivalence, namely E = mc2.5

5The history of E = mc2 is quite a bit more involved than that discussed here. After the
discovery by Maxwell and others of electromagnetic energy, radiation pressure, the Poynting vector
and Poynting’s theorem [12] on energy transport in electromagnetic systems, it became clear that
the electromagnetic energy of an electrified body must contribute to its inertia. As early as 1881
J.J. Thomson argued that the backreaction of the magnetic field of a charged sphere would impede
its motion and result in an apparent mass increase of the sphere [13]. Shortly thereafter, Heaviside
proved that the mass increase of a moving sphere with uniform surface charge distribution was m =
(4/3)E0/c2 where E0 is the electromagnetic energy of a stationary sphere [14]. Subsequently,
attempts were made to describe the electron solely in terms of its electromagnetic field, well-known
electromagnetic models being those of Abraham and Lorentz [15,16]. Out of many of these models
came the puzzling factor of 4/3 seen already in Heaviside’s calculations. Poincaré, on the other hand,
in his Festschrift article attributes momentum to electromagnetic radiation and was led to correctly
conclude m = E/c2 with E being the energy of the radiation. Poincaré discovered a means of
accounting for the discrepancy in his 1906 “Rendiconti paper” [17] by introducing compensating
forces of non-electromagnetic origin which today have come to be known as Poincaré stresses. A
somewhat complete explanation of the 4/3 factor for the electromagnetic mass in terms of relativistic
covariance was given by the young Enrico Fermi in 1922 [18, 19].

Apparently, the first serious attempt to extend mass-energy equivalence beyond the confines of
electromagnetic models was made by Poincaré in his Festschrift article. Thus Ives ascribes to
Poincaré the first derivation of energy-mass equivalence as it applies to radiation [20]. Further
development along this more general line of thought were papers by Hasenöhrl and Planck on the
inertia of a cavity containing radiation [21, 22]. Additionally, there appeared Einstein’s early con-
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In addition to describing a generalization of the principle of action/reaction for
electromagnetic systems and the ensuing implications of mass-energy equiva-
lence for radiation, Poincaré’s Festchrift article contains at least one other ex-
tremely important discovery. It is distant clock synchronization using light sig-
nals [29], in other words, that which has come to be called by most Einstein
clock synchronization. Reignier’s lucid account of this matter, i.e. Ref. [29],
makes it quite clear that it is Poincaré and not Einstein who should be given
credit for first coming up with clock synchronization in special relativity.

In fact, much of special relativity in its entirety can be traced back to the writ-
ings of Poincaré. For an interesting perspective on this from one of the great
theoretical physicists of our time, i.e. on the priority dispute between Poincaré
and Einstein regarding the subject of special relativity, I mention a recent article
by Academician Ivan Todorov [28]. He paints a very positive picture regarding
Poincaré’s role in the creation of special relativity. Interestingly, at the end of
his paper, rather than committing himself to a conclusion one way or the other
regarding the priority dispute, he simply quotes a passage from Freeman Dyson,
another great physicist of our time, like-minded in his estimation of Poincaré’s
contributions to the subject.

As a final note we point out that Poincaré’s Festschrift paper compare Lorentz’s
theory to an electromagnetic theory proposed by Hertz [30]. Hertz’s electro-
magnetic theory, which Poincaré in his Festschrift paper discards in favor of
Lorentz’s, satisfies Newton’s third law in its usual sense as a law between ma-
terial masses only [1]. Undoubtedly it is the theory of Hertz that is described in
his book, Untersuchungen Über Die Ausbreitung Der Elektrischen Kraft [30,31]
which appeared in 1892, two years before Hertz’ death at 36 that Poincaré is re-
ferring to. There Hertz presented in a chapter dealing with the electrodynamics
of moving bodies a Galilean invariant theory of electromagnetism. In that chap-
ter one finds an original set of four equations comprising what today we would
call a “deformation of Maxwell’s theory" in the sense that Maxwell’s equations
(i.e. Maxwell’s theory) are recovered as a limiting case of Hertz’ more gen-

tributions to the subject, the two papers which were already mentioned above, also attempting to
establish mass-energy equivalence in general form. Also we should perhaps mention that Einstein
throughout his life relentlessly devoted much time and effort to establishing E = mc2 as a univeral
law applicable to all forms of energy and matter. In this sense, it seems justified to associate the
name of Einstein above all others with mass-energy equivalence. In fact, according to Ohanian,
Einstein published in his lifetime no less than 7 papers on the subject, the last one appearing as late
as 1946 [23]. Ohanian notes that, in some of his subsequent papers dealing with the problem, he
repeated his original 1905 circular reasoning mistake, apparently never really understaning his error
in logic. This raises the question as to whether or not a a proof of something in physics can be
mathematically incorrect but, at the same time, correct in some sense from a physical standpoint,
which presumably is the point of the argument made by Stachel and Torretti claiming, counter to
Ives, Jammer and a whole host of others, that Einstein’s 1905 paper is not flawed [24]. For more
details on the history of E = mc2 we refer the reader to the works of Sir E.T. Whittaker [25] and
Max Jammer [5, 26]. For a recent article on the subject with a somewhat complete list of relevant
references we refer to the article by Hecht [27].
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eral theory, exactly in the same way as a Galilean invariant theory is a limiting
case of a relativistic theory when c → ∞ or as classical physics is of quantum
mechanics when ~ → 0. Hertz’ theory is thus an example of Minkowski’s anti-
deformation thesis roughly 20 years before Minkowski’s description of it in his
famous address to the 80th Assembly of German Natural Scientists at Cologne in
1908, where he introduced to the world space-time diagrams, and approximately
75 years before Segal [32] and Inönü and Wigner [33] introduced deformations
and contractions of Lie groups in physics. Minkowski’s anti-deformation thesis
is simply that an existing physical theory such as Newtonian mechanics can be
viewed as a limiting case of a more encompassing one such as special relativity.
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